If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10y^2+33y-3=0
a = 10; b = 33; c = -3;
Δ = b2-4ac
Δ = 332-4·10·(-3)
Δ = 1209
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-\sqrt{1209}}{2*10}=\frac{-33-\sqrt{1209}}{20} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+\sqrt{1209}}{2*10}=\frac{-33+\sqrt{1209}}{20} $
| x2-6x-4=3 | | x-24°+29=64 | | 14+r=31 | | 15n=6+13n | | (x-24)°+29=64 | | 3/x^2+2x=10/2x^2 | | 6x+50=x-25 | | 18c+c-10=16c+20 | | 6x2-13x-28=0 | | 3m+3=33 | | 9r=8r-8 | | 4+5x=5-2x | | -7.85+6.6v=7.1v | | -12/7x=-36 | | 5x-3+x=6+2x-1 | | 2=x+2/5 | | 8m=7m-2 | | -5(m+4)=3(m-1) | | 6y+-0.5=29.5 | | 7x-6=x+60 | | 4x-x-2=-7+5x-13 | | -20-2p=20+2p | | 4x2+20x+21=0 | | 8m12.6+4m=9.6+8m | | -7p=-9-6p | | 3(d+15)=8-4d | | 1/3(90x-12)=1/2(8x+10) | | (5+6i)(-4+7i)=0 | | 30x+18=40x+200-20 | | 1/5x-7=1/2 | | -4d=-5d+7 | | 3a-4=8+a |